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AN ASYMPTOTIC METHOD FOR STUDYING NONEQUILIBRIUM SYSTEMS 

G. M. Zas l avsk i i  

Zhurna l  P r ik l adno i  Mekhaniki  i Tekhnicheskoi  Fiziki ,  No. 2, pp. 50-56,  1966 

The fol lowing is a we l l -known  problem of s ta t i s t i ca l  physics: can  

a dynamic  system of osc i l la tors  with nonl inear  coupl ing  [?e described 

a p p r o x i m a t e l y  by s t a t i s t i ca l  laws ? This problem wa~ studied for the 

first t i m e  by Fermi ,  Ulam,  and Pasta [1] for the f o i l . w i n g  system of 

equations descr ib ing coupled oscil lators:  

X*'~ =: Xi+ 1 - -  2X t t A- Xi_l -~ O~ I(X~+ I --- Zi)2 - -  (Z i Zi_ 1 }2 l, 

( i  = t . . . . .  N; a < t) . (0 .3)  

the c h a r a c t e r i s t i c  n u m b e r s  of sy s t em (1.1) coincide;  
this me a ns  co inc idenec  of the squares  of the f r equen-  
t i e s  of a ~ - n o r m a l  osc i l l a t ions  and can lead to r e d i s -  
t r ibu t ion  of energy  among the n o r m a l  modes .  We 
shal l  cal l  the special  points  where  ~?~ coincide for 
d i f ferent  k r e sonance  points .  We shal l  seek solut ions  
of s y s t e m  (1.1) in the l o rm of asympto t ic  s e r i e s  [6]: 

The n u m e r i c a l  solut ion of system (0 .1)  did not lead ,  as expec ted ,  to 

the appearance  of any s ta t i s t i ca l  propert ies .  The nega t ive  result  led 

to further inves t iga t ions  [2, 3]. System (0. i )  was solved e i ther  nu- 

m e r i c a l ! y  or with the aid of per turbat ion theory,  but s tochas t ie i ty  
was not  observed.  The  behavior  of a nonl inear  osc i l la tor  under the 

act ion of an ex te rna l  force depending in a g iven  manner  on t i m e  

has also been studied [4 ,5] .  (See also B. V. Chir ikov,  Dissertation,  

Novosibirsk, 1959.)  A c r i t e r ion  which would ind ica te  approx ima te  
s tochas t ic i ty  of the system was found. 

An asympto t i c  method is proposed below for inves t iga t ing  a system 

of coupled  osci l la tors  which makes  i t  possible ,  with ce r t a in  def in i te  

restr ict ions,  to dec ide  whether  s t a t i s t i c a l  methods  can  be appl ied  to 

a system and what the c r i te r ion  of this  poss ib i l i ty  should be. 

In the first sec t ion  a method  is constructed which permi ts  obta in ing  
:~ympto t ic  solutions for a system of l inea r ly  coupled osci l lators ,  al l  

~f whose parameters  depend  slowly on t i m e .  In the second sect ion,  

this metbod  is appl ied  to a system of two osci l la tors  with nonl inear  
coupl ing.  

w Desc r ip t i on  of method.  A sys t em of l i nea r ly  
coupled o s c i l l a t o r s  is desc r ibed  by the equat ions  

x i"45o i2( t )x~=~ a~k(t)x~ (i=1 . . . . .  -'r (1.1) 
lf41 

where  the f r equene ies  co i and the couplin~ p a r a m e t e r s  
~ik va ry  slowly with t ime  (this may be due, for ex- 
ample,  to ex te rna l  f ields) .  Without any loss of gone r -  
ality,  we shal l  cons ide r ,  for  the sake of s imp l i c i ty ,  
that the e h a r a c t e r i s t i e  t imes  T of va r i a t ion  of the quan-  
t i t ies  C~ik, co k a re  the same .  We wri te  the s lowness  
condi t ion in the form 

i d 
~- ~ - 2 f ( l n  x d (i = I, 2 . . . . . .  ~). (1.2) 

We shall  a lso c o n s i d e r  the na tu ra l  f r equenc ie s  co i 
and the coupl ing f r equenc ies  ~ ik  as analy t ic  funct ions 
of t for all  r ea l  t and in a suff ic ient ly  l a rge  region of 
i m a g i n a r y  t (the las t  condi t ion will  be made specif ic) .  
When w i and C~ik a re  not t ime-dependen t ,  the Lagrang-  
Jan of the sys t em (1.1), which is a quadra t ic  form in  
Xk, can be reduced to diagonal  form.  In this ease,  the 
solut ion of sy s t em (1.1) is r e p r e s e n t e d  in the form of 
N n o r m a l  osc i l l a t ions  which a re  not coupled with each 
o ther  and have n o r m a l  f r equenc ies .  In the ease under  
cons ide ra t ion ,  this  t r a n s f o r m a t i o n  can not be p e r -  
formed by a single method over  the en t i re  r ea l  axis  t 
as the t r a n s f o r m a t i o n  m a t r i x  becomes  s i n g u l a r  at 
points  on the plane of the complex  va r i ab l e  t where  

t 

y~ = IIi(t) e• f ~ (v) tiT} (t 45 . . .), 

gi* = Hi (t) exp l - -  i i ~i (v) dv} (i 45. �9 .) , 

i (lib(t)= ] / - ~  ). (1.3) 

t l e re  ~i(t)  a rc  the roots of the c h a r a c t e r i s t i c  equa-  
tion which a re  de t e rmined  jus t  as in the case  of con-  

stant cdi, Ceik. 
The s e r i e s  (1.3) are  expanded in t e r m s  of a smal l  

p a r a m e t e r  following h 'om (1.2) (refer ,  for example,  
to r e fe rence  [7]); however,  it will be suff ieient  to l i ra -  
it o , t r se lves  to jus t  the p r inc ipa l  t e r m s  of the a symp-  
totie expans ions  wr i t t en  out in (1.3). When t < t_, let  
the solut ion be given in the form 

N 

Y_ = ~ (A~gi 45 A~*g~*) (1.4) 

where  A i a re  a r b i t r a r y  coeff ic ients ;  we a re  requ i red  
to find the solut ions  when t > t+: 

N 
~ = ~] (~j~ + &*~?~). (I. 5) 

The answer  wil l  not be t r iv i a l  if there  is a s i ngu l a r  
poil~t t o (more p rec i se ly ,  Re to) in the in t e rva l  (t_, t+) 
on the rea l  axis .  As is well  known, this  is  conneeted 
with the p r e s e n c e  of Stokes l ines  of the asymptot ic  
solut ions  (1.3). The coeff ic ients  of the solut ions  Ai, 
Ai* change abrupt ly  on t r a n s i t i o n  f rom one Stokes l ine 
to another .  

The re la t ion  be tween the coeff ie ients  Ai, Ai* and 
Bi, Bi* for  a sys t em of two o sc i l l a t o r s  was obtained 
in r e f e r e n c e  [6]. In this  ease ,  we have two pa i r s  of 
s i ngu l a r  points  (0 1, 02) (Fig. 1) in whieh ~21 = • 
r e spec t ive ly .  Due to the r e a l n e s s  of the coeff ic ients  
of (1.1), we have to,, = to,*, to,. = to~,.The dashed l ines  
a re  those on which the e x p r e s s i o n s  ~2~ • f~2 a re  pu re ly  
i m a g i n a r y ;  however;  (9.1 • ~2) 2 have s imple  zeros  at 
the c o r r e spond i ng  points .  We shal l  r e p r e s e n t  the r e -  
sul t  of r e f e r e n c e  [6] obtained by a method analogous 
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to Zwaan ' s  method in the form 

B = M~A, B = MIA, B = M A ;  (1 .6 )  

A~ B2 
A ~ A~* ' B ~ B2* ' 

A I * /  B I * /  

/ cos q~x -- sin ~t 0 0 '~ 
2dr = i / s i n q h  costpx o 0 ) l o  0 cos~x sin@~ , 

\ 0 0 --sinr cosch 

(I. 7) 

"M~--~--sin~p~ C~ Oc0~ ~2 --StO~' ' )  
\ 0 sin r 0 co~ tp~ 

M = M,M~ + ; 

sin ~% -- exp T 

{'f  } sin 2r oxp T (Q~ + Q~)d'~ . (1.8) 

The contours  L1, L 2 are  shown in Fig.  1. The in te-  
g ra l s  in (1.8} are  pureIy imag ina ry  and the i r  magn i -  
tude is  de t e rmined  by the d is tance  of points  Or, O~ f rom 
the real  axis .  The m a t r i c e s  M1, M2, M de te rmine  the 
t r ans fo rma t ion  of the coeff ic ients  Ai, Ai* when pa s s -  
ing through re sonances  of the type O~, O] and O 1 + O~, 
respec t ive ly .  The following is a valuable proper ty  of 
all  m a t r i c e s  of (1.7): 

(AA+) = [A~I 2 + [A~t 2 = (BB+) = inv ~ I, !1 .9 )  
A+ = (Aa* , A2* , A2 , AI) , B* = (Bl* , B2* , B2B,) 

The inva r i an t  (1.9) has the following in te res t ing  
physical  s ignif icance.  We int roduce for cons idera t ion  
the ampl i tudes  of the osc i l l a t ions  A~ which, accord ing  
to (1.3) a re  connected with A i in the following manne r :  

Then 

Ai= Ai ~  . (1.10) 

I = IA~~ + [A2~163 = Ex/ S21 + E 2 /  gL~, 

Ei =- f~i 2 ]Ai~ 2 , (1.11) 

where E i is the energy of the i- th mode. Thus, when 
pass ing  through resonance  points,  a magnitude is 
main ta ined  which is equal  to the sum of the formal  ex-  
p r e s s i o n s  for the adiabat ic  invar ian t s  of each of the 
o sc i l l a to r s  separa te ly ,  the l a t t e r  changing abrupt ly  
upon t r ans i t ion .  F o r m u l a s  (1.6) and (1.7) define the 
law connect ing the adiabat ic  inva r i an t s  of each degree 
of f reedom in a Collision, and (1.11) de te rmine  the 
in tegra l  of motion of the en t i re  sys tem.  In the case  
of sys tem (1.1) of N osc i l l a to r s ,  the points of coin-  
cidence of an a r b i t r a r y  number  of c h a r a c t e r i s t i c  roots 
will be the s ingu la r  points .  We note that coincidence 
is not n e c e s s a r i l y  to be unders tood in the l i t e ra l  sense  
- - s imp le  p rox imi ty  of s ingu la r  points is suff icient .  

We shall  begin by cons ide r ing  pa i red  r e s o n a n c e s  
(that is, points where  some pa i r s  of n o r m a l  f requen-  
cies  coincide).  In accordance  with (1.7) and (1.8), we 
have 

B= ,,% A (1.12) 

where A and B are  column vectors  having the r e spec -  
t ive components  (A 1 . . . . .  A N, A~ . . . . .  A~), (B 1 . . . . .  B N, 
B~ . . . . .  B~'), and the ma t r ix  Mik has all  e l ements  m a 3  
equal to zero with the exception of the following: 

m ~  = 1, 

/Tt iR ~ - -  n ' t k i  ~ - -  s i n  ~ i ~ :  ~ / ? g N ' c k . N + i  = - -  D g N + i , N - ~ ,  

/ a f t  = / r ~ k k  = B o s q ) i k  = E / t N + i I N ,  i ~ rlgN+k,Nek , 

( ' ) sin~'cpt~= exp ~- ~ (Qi--Qk) dr . (1.13) 
Lik 

The contours  Lik are  analogous to the contour  L i 
of Fig.  1. The product  in (1.12) is taken in the o rde r  
of sequence of resonance  points  with motion along the 
r e a l t a x i s  f r o m t <  t t o t  >t+.  If at this t ime , we en-  
counter  points at which ~2 i + 12 k = 0, then they a re  con-  
s idered analogously with r ep lacement  of the e lements  
of (1.13) with co r re spond ing  ones f rom (1.7) for the 
ma t r ix  M2. Taking the un i ta ry  na ture  of Mik into con-  
s idera t ion,  we have the inva r i an t  

N N E i 

I = ( B B  + ) = ( A A  + ) = - N  1 B ~ ] ' = ~  W "  
i = l  t = l  

�9 (1.14) 

Now, we shall  go on to cons ide r  points where th ree  
no rma l  f requenc ies  coincide ~2 i - ~2 k = f21 ("tr iple r e s -  
onance") .  Here we also have the case  in which the 
points  of pai red resonances  ~2 i = i2 k and ~2 k = ~2 l a re  
close to each other .  

We shall  show that this case  can be reduced to 
pa i red  r e sonance .  We wr i te  Yi,kl in the form 

t 

t I o, ox.{  ->-o04 
t 

11 h. (t) ~ (t - -  b) exp ~ -  ( i~ + Qi) d'r x 

t t 
, ,  _ 

ll,(t) coxp Q0 d'r} exp { +  S (O.t - -  ~,) dx} + 
t t 

i ' i 
+ ( t -  c)exp {-~-S(Q, + , ~ ) d r }  exp {-5-S (Q' - -  f~)dx} ,  

where a, 6, c are  as yet a r b i t r a r y  n u m b e r s .  In a like 
manner ,  we'gi~o wri te  Y~,k/. For  the sake of def in i te-  
ness ,  we co~d:ider that f2 i > ~k > f2l. The values  of the 
quant i t ies  ~2i, ~2k, and ~2 l coincide only at the point 
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(OI, O 2 in F ig .  2) and not in a f ini te  in te rva l ,  thus the 

l ines  on which (s - s (at  - a l l  (~2k - ~2l) a r e  
p u r e l y  i m a g i n a r y  do not co inc ide  and d i v e r g e  at a suf-  
f i c i en t ly  g r e a t  d i s tance  f r o m  O1, 0 2 (Fig. 2). When 
going around points Oi, 02 in the complex t plane, 
this makes it possible to make use of the very same 
rules for changes in the coefficients for the corre- 

sponding exponents as in the case of paired resonance. 

It now remains for us to determine the arbitrary num- 
bers a, b, c. Since the true solution of system (i. I) 
is  an ana ly t ic  funct ion in the reg ion  under  c o n s i d e r a -  
tion, i t  is  n e c e s s a r y  to r e q u i r e  that  the a sympto t i c  

so lu t ion  at point  K (Fig.  2) co inc ide  with that  obtained 
as a r e s u l t  of going around an a r b i t r a r y  con tour  L with 
r e t u r n  to point K. This  i m m e d i a t e l y  leads to the fo l -  

lowing c o n s t r a i n t s  on a, b, e: 

a I - - a  t - - b  
b c l - - c '  

F r o m  this 

a = b = c = V ~ .  

Cases in which an arbitrary number of normal frequencies inter- 
sect at a singular point also reduce to paired resonances in an anal- 
ogous manner. 

The theory considered here makes it possible to take account of 
internal resonances in a system of coupled oscillators quite simply 
by making use of a linear method. Passage through resonances can 
be interpreted as collisions of oscillators. Collisions are accompanied, 
on the one hand, by redistribution of energy and, on the other, by 
phase changes in the oscillators. All these changes can be found di- 
rectly from matrices for transforming A on passage through a reso- 
nance. This makes it possible, in particular, to determine whether 
the Iaw of phase changes in oscillators is near-random. The latter 
depends on the parameters of the problem and the nature of the dis- 
tribution of singular points in the complex t plane, that is, on the 
form of functions cJi(t ) and aik(t). 

w h e r e  c0 b c0 s, oz a r e  cons tan t s  which a r e  not t i m e -  
dependent .  The equa t ions  of  mot ion  a r e  

x'" + ((ot2 - -ay2)x  = O, y? + (00~2 _ a x 2 ) y  = 0. (2.2) 

We shah  i m p o s e  the fol lowing s y s t e m  of i nequa l i -  
t i e s  on the s y s t e m  p a r a m e t e r s :  

0012 ~ "  aA ~ ~ ~ "  002 3 ~ aA1 ~ . ( 2 . 3 )  

~ \  ,'F 
\ I I ]  

! le 
I I I  t l!/t 

I ' J n . I  

, , '  v - i  x 

3 " " 4 j 
Fig.  2 

H e r e  A~, A~ a r e  the r e s p e c t i v e  ampl i tudes  of the 
x and y o s c i l l a t i o n s .  The  f i r s t  and l a s t  i nequa l i t i e s  in 
(2.3) denote the weakness  of the non l inea r  coupl ing.  
As a l i n e a r  app rox ima t ion  to (2.2), we take 

xg' + 0012Xo = O, Yo'" + 002y = O, 

Xo --- Alei~t + A1 *e-r Yo = A3~ *w't + A~~ ~. (2.4) 

We shall  have  the fo l lowing approx imat ion :  

Z~ 

2' \ l '  .~ / > ' \  0i ' -Er 

Fig.  1 

f ~  
/ 

Lr 

T 

\ 

" ' 4  

x " +  (001 ~ --aVo2)X = 0, y'" + (002 __axo2)V = 0.  (2.5) 

It  can be seen  f r o m  the equat ions  f o r  y in (2.5) that  
y can  be r e p r e s e n t e d  in the f o r m  of a sum of rap id ly  
and s lowly va ry ing  eomponen t s ;  however ,  a c c o r d i n g  
to (2.3), the rap id ly  o sc i l l a t i ng  eomponent  y* is sma l l  
c o m p a r e d  with the s lowly va ry ing  componen t  Y 

y * ~  ~ Y .  

We w r i t e  the equat ion fo r  Y in the usual  m a n n e r  

w The s t a t i s t i c a l  p r o p e r t i e s  of  a s y s t e m  of two 
o s c i l l a t o r s  with non l inea r  coupl ing.  In th is  sec t ion  we 

shal l  show how the method developed h e r e  can be used 

to a n s w e r  the q u e s t i o n - - u n d e r  what condi t ions  do p r o p -  
e r t i e s  c lo se  to s t a t i s t i c a l  appea r  in a dynamic  s y s t e m  

of coupled o s c i l l a t o r s  ? We shal l  c o n s i d e r  a su f f i c ien t -  

ly s imp le  c a s e  of two o s c i l l a t o r s  with the Lagrange  

function 

L ----- 1/3 (x "2 + y~) - -  1/20012z2 --~ 1/200.~2y~ + 1/~(lx~Y ~ ( 2 . 1 )  

Y" + (o)33 - - i l i a  IAI~ ~ 0 (2.6) 

We employ  the notat ion 

f~l ~(t)=001 ~ - a y .  2(t), ~22 =o022-1/2a]Al~ 3. ( 2 . 7 )  

The quant i t ies  e l ,  ~2~ a r e  the f r e q u e n c i e s  of n o r m a l  

o sc i l l a t i ons  fo r  x f r o m  (2.5) and fo r  Y. It  i s  not d i f f i -  

cul t  to see  that  a~(t) s a t i s f i e s  the condi t ions  of s low-  
nes s  of va r i a t i on .  Thus,  the p r inc ipa l  t e r m s  of the 
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asymptot ic  solut ions of sy s t em (2.2) a re  of the form 

t t 

x= A,~ }-}- A,O*exp{--iil2t(z)d~ }, 
t ( 2 . 8 )  

Y~-. A,~ } + A=~ dx } �9 

Here we note a fact which is  of impor tance  in u t i l -  
iz ing exp re s s ions  (2.3). The f requenc ies  ~1, ~2 de-  
pend on A~, A~, r e spec t ive ly .  Thus, a f ter  pass ing  
through resonance ,  the n o r m a l  f requencies  also va ry  
abrupt ly .  In o ther  words,  the c loses t  resonance  point 
is de t e rmined  for given A~, A~; af ter  pass ing  through 
a s ingu la r  point, the f requenc ies  a re  cor rec ted  and 
the next  r e sonance  is  found through them, and so on 
(this opera t ion  is  shown convent ional ly  in Fig,  3). This 
is  a consequence  of the non l inea r i ty  of the in i t ia l  equa- 
t ions .  Let 

A ,  ., = As = l A = O l e i + ,  ( 2 . 9 )  

where ~b~, ~'2 a re  the phases  of the no rma l  modes i m m e -  
diate ly  before  r e sonance  (at point P in Fig.  3). After  
"col l i s ion  ~ at point O1, we have, according  to (1.6) 

IBtl e = IA~I = {cos= ~ cos ~ (% - - % )  + 

-~- sin~" r c~ (r -/- cq%)} + tAol u {cos~ ~u (sinZ (% _ r + 
+ sin= ~P~ sin~ (qh + %)} 

I A,I I A ~ I {cos ~ cos r sin 2 (qh --q~) - -  

- -  sin ~x sin ~ sin 2 (qh + q~)}, 

I Be  I e = [A ~1 z {cos ~ $, s in  ~ (q~ - -  %) § 

+ s in  ~ ~p~ s in  ~ (r + %)}  + 

-~-IA.I ~ {eosZ $~ cos ~ (r - - ~ )  -~ s i n ~  cos = (~, + r + 

+ [A~[ ]A~] {cosa~, cos~p2 sin 2 (r --q~2) - -  

- -  sin ~ sin $~ sin 2 (r + tp~)} , 

clg~hO IA~lc~176176 ~=sin(q~ -r 
= IA, Isinapxcos (qh + q%)-- IA~lsin r (qx + (p~) ' 

ct g ~,z ~ = I A]I cos r sin (r -- q's) + I As [ cos $s ,'as (q~t -- q~s) 
1 A~ [ sin ~1 sin (q'~ q- q~) q- l A~ I sin ~s cos (qh + r �9 

Here ~/,~, J,~ a re  de te rmined  by the re la t ionships  

I B~ I = B~ e~+'~ B~ l = B~ e~+'~ 

T~ 
Fig .  3 

which a re  connected by the definite functional  r e l a -  
t ionship 

~1' ----- 2a {~t'1 [~2,, ~]},  ~ '  ---- 2~ {tl'~ [~x, ~]},  (2.11) 

where  {~} denotes the f rac t ional  par t  of ~I,. The quan-  
t i ty ,I,[Ol, r takes account of the phase jump (2.10) 
due to pass ing  through the resonance  O 1 and a phase 
advance of the type 

f Qd~ 
P 

between two col l i s ions .  Let us cons ider  the c o r r e l a -  
tion* of phases  $, 1,2 

2~ 2~ 2 r: - 1  

0 0 0 

A one-d imens iona l  in tegra l  of the type (2.12) was 
computed in re fe rence  [5]. Let 

tlq [el, r = k,,r + k.~=, 

~ 2  [~,, ~=] = k,l'~, + k ~  . ( 2 . 1 3 )  

Then, it is not difficult  to show that  

1 R~--E,  h=k,,k,~--k2,k~ for h ~ . t .  (2.14) 

In a more  genera l  case 

t <D> / o  ('F,, 'P~ \ > >  i (2.15) 

Here the angular  b racke t s  denote the average  value 
of the Jacobian D. Thus,  if (D> >> 1, then the phase 
co r re l a t ion  can be cons idered  equal to zero with accu-  
racy to <D> -1, and the phases  themse lves  as random.** 
F rom (2.7), the condit ion of coincidence of f requencies  
yields  cos ~1,2 ~ 1, sin ~0t, 2 ~ 1. 

The dis tance  on the rea l  t axis  between r e sonances  
is about 1/w 2. Omit t ing the calcula t ions  for the exam-  
ple under  considera t ion,  and making use of fo rmulas  
(2.7), (2.10), and (2.15), we obtain the randomic i ty  
c r i t e r i o n  for osc i l l a to r  phases 

< D ) ~ s i n ( p  uiA1 ~ [A~ ~ 2a oh 
{OS 2 (DI 2 (0 2 

~p max (%, %) . (2.16) 

When c r i t e r i o n  (2.16) is sat isf ied,  the osc i l l a to r  phas-  
es a re  "dis t r ibuted"  as  a resu l t  of col l i s ions ,  and sys -  
tem (2.1) can be approximate ly  descr ibed  with the aid 
of s ta t i s t ica l  laws.  

Fo rmu la s  (2.10) make it poss ib le  to de te rmine  the 
posi t ion of the following resonance  O 2 (Fig. 3) and to 

' J ~ a t p o i n t Q  find the phases of the no rma l  modes ~,l, 
before resonance  0 2. We are  to compare  ~tl, 2 and r 

*In wr i t ing  R, ergodici ty,  which apparent ly  exis ts  
in the example under  considera t ion,  is a s sumed .  
** B. V. Chir ikov di rec ted  the au thor ' s  a t tent ion to 
c r i t e r i on  (2.15). 
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We shall now discuss the statistical proper t ies  of 
the system under consideration. The latter is de- 
scribed by the Lagrangian (2.1) f rom which the rapid- 
ly oscillating component :r is eliminated. The "con- 
t raeted" system has two degrees of freedom--x and Y. 
During collisions, the amplitude of Y and, consequent- 
]y, the amplitude of y* vary  abruptly. Thus, the ener-  
gy of system (X, Y) will not be an integral of motion. 
According to (2.12), the integral of motion will be the 
action 

I = [, + I~ = ~ -~ 1~ a~ . ( 2 . 1 7 )  

Here Ex, Ey are the respective energies of x and 
Y oscillations. We can write the kinetic equation for 
the process  describing the relaxation of the system 
in the usual manner.  We shall discuss only the state 
to which the system relaxes and show that the state in 
which 

<I~> = <I~> = ~/~I (2. lS) 

is the equilibrium state. 
Here the angular brackets <... > denote averaging 

over all possible states of the subsystem. Let us con- 
sider the state in which 

l A s t  ~ = [A21 ~ = [A]  2 .  ( 2 . 1 9 )  

According to (1.6), (1.7), after a collision we have 

tBII"~ = IA ] 3 ~ (AlAs* • AI*A2 ) sin (p cos ~, 
IB~I 2 = IA I ~ 4- (A~A~* + A~*A~) sin(p cos~. (2.20) 

After averaging (2.20) over  all states and taking 
account of the randomicity of the phases of amplitudes 

At, A2, we obtain < IB,] ~> = < ]B~ 12}, which immediate-  
ly leads to (2.18). Thus, we arr ive  at the equidistribu- 
tion with respect  to actions of each degree of freedom 
in the equilibrium state. 

In conclusion, the author thanks R. Z. Sagdeev and 
B. V. Chirikov for valuable discussion and cr i t ic ism.  

REFERENCES 

1. E. Fermi, J.  Pasta, and S. Ulam, "Studies of 
nonlinear problems,"  Los Alamos Scientific Report, 
LA-1940, 1955. 

2. J. Ford, "Equipartition of energy for nonlinear 
systems, 'T J. Math. Phys. ,  vol. 2, p. 387, i961. 

3. T. Ford and J. Waters, "Computer studies of 
energy sharing,and ergodieity for nonlinear osci l lator  
systems,"  J. Math. Phys . ,  vol. 4, p. I293, 1963. 

4. E. A. Jackson, "Nonlinear coupled osci l la tors ,"  
I, II. Journ.  Math. Phys. ,  vol. 4, p. 551, 686, 1963. 

5. B. V: Chirikov, Atomnaya energiya, no. 6, 630, 
1959. 

6. G. M. Zaslavskii and B. V. Chirikov, nOn the 
mechanism of the Fermi acceleration in the one-di-  
mensional Case," DAN SSSR, vol. 159, no. 2, 1964. 

7. G. M. Zaslavskii and S. S. Moiseev, "Coupled 
oscil lators in the adiabatic approximation," DAN 
SSSR, vol. 161, no. 2, 318, 1965. 

~. G. M. Zaslavskii, Lectures on the Application 
of the VKB Method in  Physics [in Russian], Izd. 
Novesibirsk, un-ta, 1965. 

9. A. Zwaan, Intensit~iten im Ca-Funkenspectrum, 
Utrecht. ,  1929. 

12 November ] 965 Novosibirsk 


