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The following is a well-known problem of statistical physics: can

a dynamic system of oscillators with nonlinear coupling be described

approximately by statistical laws? This problem was studied for the

first time by Fermi, Ulam, and Pasta [1] for the following system of

equations describing coupled oscillators:

z = Ty — 2xp + Z; +a [(acHI — ) — (z;
(i=1,...,Nya<t),

Tiy »1
(0.1)

The numerical solution of system (0.1) did not lead, as expected, to
the appearance of any statistical properties. The negative result led
to further investigations [2,3]. System (0. i) was solved either nu-
merically or with the aid of perturbation theory, but stochasticity
was not observed. The behavior of a nonlinear oscillator under the
action of an external force depending in a given manner on time

has also been studied [4,5]. (See also B. V. Chirikov, Dissertation,
Novosibirsk, 1959.) A criterion which would indicate approximate
stochasticity of the system was found.

An asymptotic method is proposed below for investigating a system
of coupled oscillators which makes it possible, with certain definite
restrictions, to decide whether statistical methods can be applied to
a system and what the criterion of this possibility should be.

In the first section a method is constructed which permits obtaining
asymptotic solutions for a system of linearly coupled oscillators, all
of whose parameters depend slowly on time. In the second section,
this method is applied to a system of two oscillators with nonlinear
coupling.

§1. Description of method. A system of linearly
coupled oscillators is described by the equations

2 o2 () T = ) e (f) zx
ft+1

(i=1,..... vy (1.1)
where the frequencies wj and the coupling parameters
ajk vary slowly with time (this may be due, for ex-
ample, to external fields). Without any loss of gener-
ality, we shall consider, for the sake of simplicity,
that the characteristic times T of variation of the quan-
tities ajk, wi are the same. We write the slowness
condition in the form

1 d

<) (=12, N). (1.2)

We shall also consider the natural frequencies wj

and the coupling frequencies i as analytic functions
of t for all real t and in a sufficiently large region of
imaginary t (the last condition will be made specific).
When wi and «ji are not time-dependent, the Lagrang-
ian of the system (1.1), which is a quadratic form in
Xk, can be reduced to diagonal form. In this case, the
solution of system (1.1) is represented in the form of
N normal oscillations which are not coupled with each
other and have normal frequencies. In the case under
consideration, this transformation can not be per-
formed by a single method over the entire real axis t
as the transformation matrix becomes singular at
points on the plane of the complex variable t where

the characteristic numbers of system (1.1) coincide;
this means coincidence of the squares of the frequen-
cies of Qﬁ-—normal oscillations and can lead to redis-
tribution of energy among the normal modes. We
shall call the special points where 912( coincide for
different k resonance points. We shall seek solutions
of system (1. 1) in the form of asymptotic series [6]:

{
y,=@expi {Qmant+..),
t

g =T () expi—i{ Q(m)dty (1 +.. ),

(lli(t):Véi—UT). (1.3)

Here £j(t) arc the roots of the characteristic equa-
tion which are determined just as in the case of con-
stant wj, @ik.

The series (1.3) are expanded in terms of a small
parameter following from (1.2) (refer, for example,
to reference [7]); however, it will be sufficient to lim-
it onrselves to just the principal terms of the asymp-
totic expansions written out in (1,3). When t < t_, let
the solution be given in the form

Y =

(A + A yd)

1

(1.4)

M=

where A; are arbitrary coefficients; we are required
to find the solutions when t > t,:

N
Y, =3 (B 4+ A%pi") | (1.5)
=1

The answer will not be trivial if there is a singular
point t; (more precisely, Re t) in the interval (t_, t,)
on the real axis. As is well known, this is connected
with the presence of Stokes lines of the asymptotic
solutions (1.3). The coefficients of the solutions Aj,
A;* change abruptly on transition from one Stokes line
to another.

The relation between the cocfficients Aj, Aj* and
Bi, Bj* for a system of two oscillators was obtained
in reference [6]. In this case, we have two pairs of
singular points (04, O,) (Fig. 1) in which @y = +Q,,
respectively. Due to the realness of the coefficients
of (1.1), we have to, = to,*, o, = tos. The dashed lines
are those on which the expressions Q; = @, are purely
imaginary; however, (4 = 92)2 have simple zeros at
the corresponding points, We shall represent the re-
sult of reference [6] obtained by a method analogous
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to Zwaan's method in the form

B=MA, B=MA, B=MA:;

A By

_| A _| B
() (5

A* By*

cosP; —sing 0 0
_ .| singq cOs @y 0 0
M, = l( 0 0 cos @; sin cp,) s 1.7

(1.6)

0 0 ~—sing, cosg
€os Qg 0 sin g 0
- s} 08 Qg 0 —sin @z _ + .
M, = (— sing;, 0  cosq. 0 ) ! M= MM,*
0 sin @2 0 co8 @

sin? ¢, = exp {Lz (gv (2, — Q) dr} ,
L,

sin? g, = exp{T"@(Ql-p Q,)dt} ‘ (1.8)

L

The contours I, L, are shown in Fig. 1. The inte-
grals in (1. 8) are purely imaginary and their magni-
tude is determined by the distance of points O;, O] from
the real axis. The matrices My, M,, M determine the
transformation of the coefficients Aj, Aj* when pass-
ing through resonances of the type Oy, O} and 0y + O],
respectively. The following is a valuable property of
all matrices of (1.7):

(AA%) = A + [4,]* = (BB*) =

inv = 1/, (
At = (A% A%, Ay 4y,

9)
B+ = (B*, B,*, B,8y).

The invariant (1.9) has the following interesting
physical significance. We introduce for consideration
the amplitudes of the oscillations A} which, according
to (1.3) are connected with Aj in the following manner:

x‘liz flio S), . (1.10)
Then
I =]AFQ + |A2° |2£22 =E,/Q+E,/Q,,
E; = Qi2|Ai°|2 s (1.11)

where Ej is the energy of the i-th mode. Thus, when
passing through resonance points, a magnitude is
maintained which is equal to the sum of the formal ex-
pressions for the adiabatic invariants of each of the
oscillators separately, the latter changing abruptly
upon transition. Formulas (1.6) and (1, 7) define the
law connecting the adiabatic invariants of each degree
of freedom in a collision, and (1.11) determine the
integral of motion of the entire system. In the case

of system (1.1) of N oscillators, the points of coin-
cidence of an arbitrary number of characteristic roots
will be the singular points. We note that coincidence
is not necessarily to be understood in the literal sense
—simple proximity of singular points is sufficient.

We shall begin by considering paired resonances
(that is, points where some pairs of normal frequen-
cies coincide). In accordance with (1.7) and (1. 8), we
have

B= (H. M,»,l-> A
k

i,

(1.12)

where A and B are column vectors having the respec-
tive components (Aq, ..., Ay, Af....,Af), (By...,BN,
Bf;, ..., Bf), and the matrix My has all elements myg
equal to zero with the exception of the following:

my. = 1,
My == — Myi = — SI0 Qi = MUN4k.N+1 = — MN+irN+k,
my; = Myx = COS Qix == MN4isN+i = MN+k/ Nk,
sin® @y = exp (~- §) (Qi— Q) dt) . (1.13)
Lig

The contours Ljk are analogous to the contour Lj
of Fig. 1. The product in (1.12) is taken in the order
of sequence of resonance points with motion along the
real t axis from t < t_ tot > ¢t,. If at this time, we en-
counter points at which Q; + Q) = 0, then they are con-
sidered analogously with replacement of the elements
of (1.13) with corresponding ones from (1. 7) for the
matrix M,. Taking the unitary nature of Mjk into con-
sideration, we have the invariant

N N E
I=(BB*):(AA*):E | Bil® =2 o

i=1

-(1.14)

Now, we shall go on to consider points where three
normal frequencies coincide Q; = Qi = Q7 ("triple res-
onance"). Herc we also have the case in which the
points of paired resonances £j = {Jy and Qy = € are
close to each other,

We shall show that this case can be reduced to
paired resonance. We write yj i in the form

4 o
Hfi(l)- =aexp {_’2, S Qi+ Qk)‘_dr} exp {'—“) S (Qi — Q) d-.:] L
: t
+ti—a “P{ - S(f’k + Q) dr} exp { S(Qk— Q) dt},

IIky 5 E(i——b)exp{t2 St(Q, + Q) dr }><

X e‘l‘[ 12 S(Qh Q) d }

+bexp{‘2 S(QH Q,)dt}exp{ ! \ QR—Q)dr}——Q

[t

(1.15)

Q) dr} +
(@ + ) dv} exp & § (9% — Q) dr},

t

Ty = 0o {’TSM + 0 dt}exp {TS (% —
{+

3 e

+ (1 —c)exp

where a, b”‘ c are as yet arbitrary numbers, In a like
manner, we, also write y1 kI. For the sake of definite~
ness, we condider that Ql > Qp > ;. The values of the
quantities ©j, Qk, and Q; coincide only at the point



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 35

(04, Ojin Fig. 2) and not in a finite interval, thus the
lines on which (; — Qk), (21 — ), @k — Q) are
purely imaginary do not coincide and diverge at a suf-
ficiently great distance from Oy, O, (Fig. 2). When
going around points Oy, O, in the complex t plane,

this makes it possible to make use of the very same
rules for changes in the coefficients for the corre-
sponding exponents as in the case of paired resonance.
It now remains for us to determine the arbitrary num-
bers a, b, ¢. Since the true solution of system (1,1)
is an analytic function in the region under considera-
tion, it is necessary to require that the asymptotic
solution at point K (Fig. 2) coincide with that obtained
as a result of going around an arbitrary contour L with
return to point K. This immediately leads to the fol-
lowing constraints on a, b, c:

a _l—a 1—b
5= =

¢ 1—c’

From this

a=b=c==1/2,

Cases in which an arbitrary number of normal frequencies inter-
sect at a singular point also reduce to paired resonances in an anal-
ogous marnner.

The theory considered here makes it possible to take account of
internal resonances in a system of coupled oscillators quite simply
by making use of a linear method. Passage through resonances can
be interpreted as collisions of oscillators. Collisions are accompanied,
on the one hand, by redistribution of energy and, on the other, by
phase changes in the oscillators. All these changes can be found di-
rectly from matrices for transforming A on passage through a reso-
nance, This makes it possible, in particular, to determine whether
the law of phase changes in oscillators is near-random. The latter
depends on the parametess of the problem and the nature of the dis-
tribution of singular points in the complex t plane, that is, on the
form of functions wi(t) and ik (1).

Fig. 1

§2. The statistical properties of a system of two
oscillators with nonlinear eoupling, In this section we
shall show how the method developed here can be used
to answer the question—under what conditions do prop-
erties close to statistical appear in a dynamic system
of coupled oscillators? We shall consider a sufficient-
ly simple case of two oscillators with the Lagrange
function

L= 1y (£ + §) =022 — Y0,y + Yy 2.1)

where wy, Wy, « are constants which are not time-
dependent. The equations of motion are

4 (@f —ap)e =0, 4+ (0 —az)y =0.(2,2)

We shall impose the following system of inequali-
ties on the system parameters:

0" > 0d," > 0 >ad,% (2.3)

2\ .’Ii,
}og 7
rd
Z./"' ‘/ﬁ
;o\
L
K

Fig. 2

Here Af, A$j are the respective amplitudes of the
x and y oscillations. The first and last inequalities in
(2. 3) denote the weakness of the nonlinear coupling.
As a linear approximation to (2.2), we take

Y, + 0ty =0,

Yo = A2°eiw2t -+ A;*e-iw,

zg + 0z =0,

. 2.4
zy = A0t + A Fertwd, ;@4

We shall have the following approximation:
"+ (02 —ayd)z = 0, y + (0,2 —azfy = 0. (2,5)

It can be seen from the equations for y in (2.5) that
y can be represented in the form of a sum of rapidly
and slowly varying components; however, according
to (2.3), the rapidly oscillating component y* is small
compared with the slowly varying component Y

o) A2
y* ~ lm:zl Y.

We write the equation for Y in the usual manner

Yo+ (02 — e [A°[Y =0, (2.6)
We employ the notation
Q2 (1) = 02 —ay? (1), '=0—Yu |A4°(2, 2.7)

The quantities Q, @, are the frequencies of normal
oscillations for x from (2.5) and for Y. It is not diffi-
cult to see that ©,(t) satisfies the conditions of slow-
ness of variation. Thus, the principal terms of the
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asymptotic solutions of system (2.2) are of the form

g= ACexp {i S Qu (1) de} + 4, exp {_ iggl (v dt},
, e
y = A’ exp {i 5 Q. d'r} + A% exp {—— iS Q, dr} .

Here we note a fact which is of importance in util-
izing expressions (2.3). The frequencies Q;, Q4 de-
pend on A3, A}, respectively. Thus, after passing
through resonance, the normal frequencies also vary
abruptly. In other words, the closest resonance point
is determined for given A3, A$; after passing through
a singular point, the frequencies are corrected and
the next resonance is found through them, and so on
(this operation is shown conventionally in Fig, 3). This
is a consequence of the nonlinearity of the initial equa-
tions. Let

AP =B Al ey, A=A o
3

Ve

where ¢4, {4 are the phases of the normal modes imme-
diately before resonance (at point P in Fig, 3). After
"collision® at point O, we have, according to (1.6)

[By? =|A.]? {cos® y, cos? (¢, — ¢s) +
-+ sin* 4y cos® (@) + @5} 1[4, {cos® ¥, (sin? (g, — @) +
+ sin® ¥, sin? (p; + @)} —
— 14,114, {cosyp, cos, sin 2 (¢; —¢,) —
— siny, sin, sin 2 (@, + o)}
| By|® =14,]® {cos® P, sin® (g, — @,) -+
+ sin? P, sin® (@, + @)} +
+ ] A, ® {c0s® P, cos® (p; — @a) -+ sin® P, cos® (@) + @)} +
+14;1]A4,] {cosp, cosp, sin 2 (¢; — @) —
- sin P, sin, sin 2 (@, + @,)},

1 A1| c0s Py cos (91— @a) — | Aa | cos Pasin (q1 —@s)
| Ay [sin Py cos (@1 + @2) — | A2 | sin $asin (g + @) ?
[ A1 ] cos Pisin (@1 — @a) + | Az cos ¥z cos (¢ — Ga)
[ Ay|sinrsin (@ + @z2) + | 42 | sinPacos (Gr -+ P2) -+

Ct‘g‘ ‘l’lo =

ctg Py” =

Here #{, ¢$ are determined by the relationshipe
|By| = Bie’, | By| = By,

7o
|

Fig. 3

Formulas (2,10) make it possible to determine the
position of the following resonance O, (Fig. 3) and to
find the phases of the normal modes ¥, ¢§ at point Q
before resonance O,. We are to compare ¢y ; and di{,z

which are connected by the definite functional rela-
tionship

%' = 2a {¥, ¥y, ‘Pal}v ' = 20 (¥, [P al}, (2.11)
where {¥} denotes the fractional part of ¥. The quan-
tity ¥{sq, ] takes account of the phase jump (2.10)
due to passing through the resonance Oy and a phase
advance of the type

Q
Ser

P

between two collisions. Let us consider the correla-
tion* of phases Uy,

R= @‘i“’*? da ()" — ) (b’ — ) (SS (p — mp? a’ap)_.l(z. 12)
0 o °

A one-dimensional integral of the type (2.12) was
computed in reference [5]. Let

Wy Wy bel = kuthy + Kag¥s,
¥, 1y, 9ol = Koy + Fog¥pe . 2.13)

Then, it is not difficult to show that

R~—;—-, A = Ky kas — karkip for A>1.(2.14)

In a more general case

2} , ¥ .
R~pe, (D ={GRe0>1. @.15)

Here the angular brackets denote the average value
of the Jacobian D. Thus, if (D) > 1, then the phase
correlation can be considered equal to zero with accu-
racy to (D)”!, and the phases themselves as random **
From (2,7), the condition of coincidence of frequencies
vields cos ¢y 9~ 1, sin @ 4~ 1.

The distance on the real t axis between resonances
is about 1/w,. Omitting the calculations for the exam-
ple under consideration, and making use of formulas
(2.7), (2.10), and (2.15), we obtain the randomicity
criterion for oscillator phases

oA (AP ey
(ng (D]“’ Wy

(Py ~sing >1,

@ omax (@, F). (2.18)

When criterion (2.16) is satisfied, the oscillator phas-
es are "distributed" as a result of collisions, and sys-
tem (2.1) can be approximately described with the aid
of statistical laws,

*In writing R, ergodicity, which apparently exists
in the example under consideration, is assumed.
** B. V. Chirikov directed the author's attention to
criterion (2.15).
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We shall now discuss the statistical properties of
the system under congideration., The latter is de-
scribed by the Lagrangian (2.1) from which the rapid-
ly oscillating component y* is eliminated., The "con-
tracted" system has two degrees of freedom~x and Y.
During collisions, the amplitude of Y and, consequent~
ly, the amplitude of y* vary abruptly. Thus, the ener-
gy of system (X, Y) will not be an integral of motion.
According to (2.12), the integral of motion will be the
action

E. , E
IT=lL+lhh=5"+ 5. 2.17)

Here Ex, Ey are the respective energies of x and
Y oscillations. We can write the kinetic equation for
the process describing the relaxation of the system
in the usual manner. We shall discuss only the state
to which the system relaxes and show that the state in
which

<II> = <Iz> = 1/21 (2-18)

is the equilibrium state.

Here the angular brackets (...) denote averaging
over all possible states of the subsystem. Let us con-
sider the state in which

[Ag]? = |A4,]® =[4]%. @.19)

According to (1.6), (1.7), after-a collision we have

|By|® = |A]? — (4,4,F + A,*4,) sin ¢ cos ¢,
1Byl2 = [A}2 4 (4,4,% 4 A*4,) sing cos g, (2.20)

After averaging (2.20) over all states and taking
account of the randomicity of the phases of amplitudes

Ay, A,, we obtain (| B,;|? = (|B;|%), which immediate-
ly leads to (2.18). Thus, we arrive at the equidistribu-
tion with respect to actions of each degree of freedom
in the equilibrium state.

In conclusion, the author thanks R. Z. Sagdeev and
B. V. Chirikov for valuable discussion and criticism.

REFERENCES

1. E. Fermi, J. Pasta, and S, Ulam, "Studies of
nonlinear problems," Los Alamos Scientific Report,
LA-1940, 1955,

2. J. Ford, "Equipartition of energy for nonlinear
systems," J. Math. Phys., vol. 2, p. 387, 1961.

3. T. Ford and J. Waters, "Computer studies of
energy sharing.and ergodicity for nonlinear oscillator
systems," J. Math, Phys., vol. 4, p. 1293, 1963.

4, E. A, Jackson, "Nonlinear coupled oscillators,”
I, II. Journ. Math. Phys., vol. 4, p. 551, 686, 1963.

5. B. V. Chirikov, Atomnaya energiya, no. 6, 630,
1959,

6. G. M. Zaslavskii and B. V. Chirikov, "On the
mechanism of the Fermi acceleration in the one-di-
mensional case,” DAN SSSR, vol. 159, no. 2, 1964.

7. G. M. Zaslavskii and S. 8. Moiseev, "Coupled
oscillators in the adiabatic approximation,” DAN
SSSR, vol. 161, no, 2, 318, 1965, '

8. G. M. Zaslavskii, Lectures on the Application
of the VKB Method in Physics [in Russian], Izd.
Novosibirsk, un-ta, 1965.

9. A. Zwaan, Intensititen im Ca-Funkenspectrum,
Utrecht., 1929,

12 November 1965 Novosibirsk



